EFFECT OF INJECTION AND NONUNIFORMITY OF
TEMPERATURE ON FRICTION IN THE ENTRY
REGION OF A TUBE
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Results are presented from an experimental study of the effect of injection and temperature
nonuniformity on the coefficient of friction in the entry region of a tube. A method is pro-
posed whereby the kinematic flow characteristics can be used to determine the coefficient of
friction directly from experimental data. This method has been applied to the data of various
authors. The results of experiments carried out over a wide range of conditions are reported.

Coefficients of friction can be determined experimentally either by using floating elements to directly
measure tangential shear stresses, or by having recourse to indirect procedures involving treatment of
the velocity profile or numerical integration of the momentum relation. Methods based on electrochemical
principles and thermal analogies have also found wide application.

Resort is usually had to indirect methods since it is not always possible to measure the tangential
stresses directly, especially under complex gasdynamic conditions.

Two procedures are available for finding the coefficient of friction from the velocity profile in the
turbulence center of the boundary layer {1, 2]. The first of these rests on the existence of a logarithmic
region within the boundary layer. Here a velocity profile in the coordinates wy/w, = f(w,y/v) is developed,
and the equation

wy =V, x1(ln y + const)

(1
is then used to find the coefficient of friction.

The value obtained for the coefficient of friction will depend on the coefficient of turbulence w, and its
accuracy will vary with the precision of measurementof the slope (V4). The drawback to this method lies in
the fact that it cannot be applied to gradient and nonstationary flow where the logarithmic region in the
velocity profile shrinks away to essentially zero [3]. The method proposed in [2] is largely an improved
version of this procedure, and suffers from the same defects.

The coefficient of friction can also be obtained from the integral momentum equation. Here the pre-
cision of the result obtained is largely determined by the accuracy of the velocity profile measurements and
subsequent logitudinal integration and differentiation.

The work of [3, 4) was carried out with a momentum equation of the form

T COS™1a ro COS™! &

— Ty dx =d S owerrdy +d % Prdy
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cos J (2)
The accuracy of the final result was thereby improved, the first term on the right-hand side of this

equation being generally much smaller than the second, without, of course, eliminating the error inherent

in velocity profile measurements. In Egs. (1) and (2), wy designates the velocity, P the pressure, r the ra-

dius, p the density, Vi the dynamic velocity, and Ty the tangential stress on the wall, while x and y are the
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respective longitudinal and transverse coordinates, and « is the angle between the channel axis and the wall.

By drawing on the relation between kinematic and integral flow characteristics it should be possible
to eliminate the necessity of velocity profile measurements thereby considerably increasing the accuracy
of the final result.

This relation can be developed from the continuity equation and the integral displacement thickness
equation for the axially symmetric channel.

Here one has

0w r/dz + dpw,rior = 0 3)
1
6* { pw, > { ycosa 2 ¥\
1 — 1 —
r‘o § Pawa / \ ) (4)

Integration of (3) over the range of variation of the longitudinal and transverse coordinates gives

X;
PawoFe? (1 — 28* cosa [ ry) = Parwn (1 — 28,* cosa, /'rm) + § pwwco;s"a ax ®)
Let it now be assumed that
pwy | powy = (y / o) ' ©)
n being an unknown empirical constant, and T = ry/ry;.
Substituting from (6) into (4) and integrating, one finds that
6_’ — n?(2 — cos a) + n (4 — cos a}
ro 2nt4-8n + 4 )
Equation (7) can now be solved for n to obtain
66t /ra—4 4-cos , 'v1 66F/ry—4+cosa )2 40" /ry t'e
R O Y ey gy [T{ 28" [ro—2 tcos & } T3 re—2 + cosa (8)

For flow in a constant-cross-section tube, r; = const, cos & = 1, so that (8) reduces to

"=—%TH%‘%—_Z‘>(2§_:—1) J% ©)
Solving (4) for the displacement thickness, one finds that
X
= rail - Pm:r [p°‘w°‘(1 —2tR ) 43" WNM]} (10)

By measuring the dynamic pressure distribution and the transverse flux, and drawing on Eqs. (8) and
(10}, the exponent of (6) can be evaluated for any particular section. The form of Eq. (6) is such as to
limit application to cases of breakaway flow.

For flow in the entry region of a tube, simultaneous solution of (9) and (10) gives the following simple
expression for n

n= Y+ [+ 22 [ (11)

Integration of (2) over the working section gives
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B4 being the momentum flux parameter.

In the case of nonisothermal streamline flow of a permeable surface, (13) can be integrated directly
by drawing on (6) and relations following from field similarity for the dimensionless enthalpy, concentra-
tion, and velocity, i.e.,

P/ po =l + (1 — %) olpn + (1 — ) ollpe + (1 — o) wh)?
Here yc, yg, and Yy are the respective heat capacity, nonuniformity, and enthalpy factors, and w =wy /Wo.

It will be shown below that this approach gives a reasonably accurate estimate of the momentum flux
parameter.

Let us at the moment simply compare values of the momentum flux parameter obtained through these
various procedures.

Figure 1 gives a comparison of the results obtained by graphical integration [4, 5] of the experimental
data and by the methods outlined in the present work. The points of curves 1 and 3 indicate values of the
momentum flux parameter obtained either from veloeity profiles developed over various sections of the
entry region of a hydraulically smooth tube [4], or from profiles obtained under transverse gas flow in the
main portion of the tube [5].

Results obtained by the method of the present paper are covered by the curve of Figs. 1. The exponent
n of (6) was evaluated from Eqgs. (9) and (10). In each case, the velocity distribution along the tube axis was
taken from the published graphs of [4, 5]. The results obtained are seen to be in satisfactory agreement in
every instance. Inadequacies in the method- and inaccuracies in the experimental data. might both account
for discrepancies in the neighborhood of x ~ 0. The errors of measurement and velocity profile treatment
are minor over the entry region of hydrodynamic stabilization where the boundary layer is thin. Additional
difficulties arise here from the fact that the momentum flux parameter varies by as much as 3% under the
conditions of [4].

The points on curve 2 of Fig. 1 represent the results of treatment of data obtained in the entry region
of a rough-walled tube, again using the methods outlined in the present paper [6]. The experimental values
are seen to be in satisfactory agreement with values obtained by integrating (13), where the working equa-
tion for B takes the form

8 /¢, 5 (815 ¢ | 5 o 4\l (8
B=2?{‘—5L' TT?(TT+T T—T)}'1 () (14)

Here it was assumed that « = 0.4. The coefficient of friction, the thickness of the boundary layer, and the
relative velocity along the tube axis, quantities required for substitution in (14), were determined by the
methods of [6].

Measurements on high-enthalpy gas flow [3, 7, 8] have shown that temperature nonuniformity results
in no more than a slight deformation of the flow profile across a boundary layer. This suggests the pos-
sibility of extending the method proposed here to still more complex cases.

Let us therefore now assume entropy and velocity field similarity in the nonisothermal turbulent
boundary layer, and, on this basis, integrate Eq. (13).

Drawing on (6), one obtains

B‘ _ ( P, B (1 — £ cosa) cosa dE
) t—a—wE
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The curves of Fig. 2 (for 1, {pw)/pwy: for 2, ) cover the results obtained by treating the data of [3]
through Egs. (11) and (15), while the points indicate results obtained from a graphical integration of (13),
using experimental data on the velocity profile and temperature across the boundary layer in the region of
stabilized flow. The effect of temperature nonuniformity on the relative axial velocity was taken from [3].
The results obtained by these two procedures are in satisfactory agreement.

Thus the momentum flux parameter for gas flow with transverse mass transport in a rough-walled
tube under nonisothermal conditions can be obtained from a measurement of the velocity at the outer bound-
ary layer edgc and the mean velocity averaged over the cross section in question.

The values of 3 obtained here were used, in turn, to obtain a solution to Eq. (12). Using the method of
least squares, the drag integral was approximated as an m-term polynomial series,

Xy ax m
§ Tufory = %aiX‘ (16)

1

The value of the coefficient of friction was then obtained by differentiating (16)

m
c . - -
4= El}iaix’ 1 cosa [Fopowei?] ™ )

In order to establish the frictional law, it is necessary to have Reynolds numbers determined from
the momentum transfer thickness. Here one has recourse to the equation for the conservation of momen~
tum, written as

dR** | R* dW, R** dra R dPo* _i_ . .
rDd T We -dX (1+H)+ .dX - /mcu/.ugcosa dxX ) WORl(1 T bl)

o

. ino&++ . &t v wo
R = M= Wo= g (18)
R — m:io , b= el X=z/2r

with the subscript 0 designating quantities evaluated at the outer boundary layer edge and 1 quantities evalu-
ated at the channel entrance; w the wall parameter, and P* the total pressure.

Integration of (18) gives

woi X;

4 144 Toi ¢

Ri* = exp {— S 2 dwy, — In 2 } [Q (T’ WoR, (1 4 by)
Wey X,

(19)
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Figure 3 shows the results of treating experimental data (1, [4]; 2, |5]; 3, 4, [6]) on [riction in the en-
try region and principal section of tubes, both smooth and rough walled, under transverse gas flow. The
starting point for this work was the measured axial velocity, and the mean velocity averaged over the sec~
tion in question.
The experimental data were treated in the following manner. The displacement thickness was first
calculated from Eg. (10) using the measured kinematic flow characteristics for the cross section in ques-

37



Cs T~ = - _
. ]
w0 T T
i °9 O0s9
23 _4____%&__0"
A IR i N
o7 afsl ;
83 cg |
]
193 " J
J 197 2

Fig. 4

tion and for entry at that segment of the tube under study. The exponent of (6) was then obtained from Eq.
(8)-

The complex quantity g was then calculated from Eq. (15). The value of the drag integral was found as
a function of the longitudinal coordinate, using Eq. (12). The method of least squares was used to carry the
resulting sequence into a series of the type of (16), and the coefficient of friction then obtained by differen-
tiating the latter. The value of the Reynold's number could be obtained by numerical integration of (19).

The value of the coefficient of friction was reduced to standard conditions by the use of various func-
tions, each covering one type of interaction.

Thus the effect of surface roughness was allowed for by introducing the function

.~ K"ho-—lnf,m 2 W __<C/ )
‘{‘r_ ( ’/Jll—lll.':',x—) ’ llr“ —f; R++ (20)

derived earlier in [6], and the effect of injection by the function

(Vg - 1 b \2 ] 0.83 21
}“_(1_7{)’ bc=4<17-—3;+—w—4—) (1)

derived in [9].

It is scen from the graph that the experimental points clustered around a curve satisfying the equation

cf /2 = 0.0128F R0 Wg =I1¥,; (22)

The problem of heat exchange in the entry region of a tube under nonisothermal conditions and with
injection has been discussed carlier in (7, 10, 11] where measured values of the local axial flux and the
mean velocity over the streaming surface are reported. The methods of the present paper can be used to
obtain the coefficient of friction from measurements of this type.

The results obtained from frictional data applying to the entry region of the tube under various types
of departure from temperature uniformity (1, yp = 0.8; 2, 0.61; 3, 0.58; 4, 0.56), are shown in Fig. 4. Here
the coefficient of friction was calculated from Egs. (12), (15), and (17), and the Reynolds number ohtained
from (19). The coefficient of roughness was evaluated from (2), and the departure from isothermal condi-
tions expressed through

Yo=1+[401 — VE)IE (1 — oV F¥ucro] 2)7 (23)

The crest height relative to the roughness was obtained from the measured drag cocfficient and the
Nikuradze formula [13], and proved to be 1073, The drag coefficient was obtained by means of a preliminary
scavenging of the main portion of the tube. It is obvious that the points fell around a curve of the type of
(22) with ¥y = 1.

The figure also contains points obtained over the hydrodynamic stabilization segment of the tube,
working under nonisothermal conditions with injection (5, ¥, = 0.6; b = 3.3; 6, yh = 0.76, b = 0.96) [10, 11].

Here treatment of the data proceeded through Egs. (9), (10), (12), (15), and (19).

The valucs obtained for the coefficient of {riction were reduced to standard conditions with the aid of
the functions (20), (21), and (23). The points obtained fell on a curve of the form of (22) in this case also.
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